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Geophysical Fluid Dynamics

e The object: study of naturally occurring large-scale flows on the Earth

e Two features: rotation of the Earth;

vertical density stratification of the medium
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Internal Gravity Waves
- Waves that exist in stratified fluids due to gravitational restoring forces

I(kx +mz —wot)

m |_<> EEst ot —
"
k

" Lines of constant phase

Wave propagating in 2D: W = W ,€
Z

K,C

Xi‘z—

X

.

o function of direction K @ function of magnitude
and not of the magnitude K [ CCULESINN only for surface waves

[l <o <|N|




B,
GeophysicalrEluid Dynamics (GED)

= ' 7'-_"'""';:_"'— “"'_ . — :-:__
Propagation | Nonlinear interactions | Dissipation -
\ -1--.. : ::J.-_I'::': .- : T-:_- . L i \ \

Energy transfer Lﬂa

---\__m- il
I
et . P
.'. -_—"—q__: ¥ ]
A=
EEEEEEEEEEEEEEEEEEEEEEENEN

.'5"'- .

- Plays an important role in cI.imate_-#'_--f ittt b b
- i e Yescribes internal wave field
variability S S el N e el
- = __ el e -.-_:' | 3 'ﬂ_"-.—:": )| 1 1 _'* .:“-‘ "‘-I=:

-- Most uncertain compon Lol S p ~ .:- :—: :;_

ocean General Circul_atia’ﬁﬁ

——-

GM has much the same shape in the ocean

Nonlinear wave interactions smooth out any spectral irregularity by
redistributing energy within the spectrum



PENERIRERE

A resonant wave is a wave satisfying the dispersion relation and propagating at the
frequency and the wave-number produced by two primary waves

A triad of internal waves can interact resonantly among themselves if the linear dispersion
relation satisfies




Previous studies

Analytic approach:
The energy distribution is well understood for the case of a single triad

Statistical approach and Numerical analysis
Do not explain the nature of nonlinear interactions.
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Resonant interactions
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The advective term in the density equation is written in the
linearized form:
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— the rate of change of the density in a point is only due to the vertical
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Look for solutions (W, V, p) = 2 gi (WI ’Vi » O )
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The nonlinear interactions become evident only in the second order
problem:
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For resonant terms
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Example: Two resonant triads
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For this case,
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Two questions

Are resonant interactions in fact possible?

How do the wave amplitudes evolve In time?




Solutions to the resonance conditions

Given

SWitlareactions: - ., = /\‘
Ki+ K> W, + @,

The high frequency wave (wo , RO) is assumed to be known.
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The idea is to treat y as known and see if we can solve for x. £ o
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Solutions to the resonance conditions

Difference reactions: In this case wave 1 (one of the low frequency
waves) is known, and we choose the mode number of wave O, i.e., after
switching the indices on waves 0 and 1, we have

a)lce)2 or +a)2 = 0,

Given
2 _1 2
T [T
Synchronhism condition: o | y-1 1 RCE
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y y-1

[1] There may be as many as four solutions;

[2] While we could assume n, >0 for the sum reactions, this is
not true for difference reactions = positive and negative values

of N, must be considered. '
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Resonant triad model

Generates an arbitrary large number of resonant triads of IWs in (a), n) space with
frequencies spanning the range of possible frequencies;

Generates the evolution equations for the amplitudes for each obtained
resonant wave;

Wave amplitudes are initialized on a chose of the initial energy spectrum,;

The obtained evolution equations to determine the temporal evolution of
each wave are solved,;

The temporal evolution of energy distribution among the various possible
wave numbers and frequencies based on the previous results is computed.

NOTE: The model can be used to determine the temporal evolution of an

arbitrarily chosen initial energy spectrum.




E> Initial amplitudes expressed in terms of the GM spectrum:
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rn - number of waves in each frequency band at given mode number.
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Represent the initial energy distribution of a given mode number n in each
frequency band by
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Schematic to illustrate the process of generation of resonant triads in (60 n)— space.
All triads are generated from initial base wave of frequency @, . The level O triads
are plotted by a solid red line. Level 1 triads are plotted by a blue line and Level 2

triads are plotted by green dots.



100 000 resonant triads
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Results

Evolution of the wave’s amplitudes to
predict the evolution of the internal wave
energy spectrum

Solve the system of 200 000 differential
equations
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Other results & Conclusions

Evolution of the GM spectrum at different latitudes;
Forced waves (energy inflow);
Modified GM spectrum;

Oscillatory nature of the model;
The GM model represents the stable state
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